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Methods for rapid and label-free cell
assay are highly desired in life science.
Single-shot diffraction imaging pre-
sents strong potentials to achieve this
goal as evidenced by past experimental
results using methods such as polariza-
tion diffraction imaging flow cytome-
try. We present here a platform of
methods toward solving these prob-
lems and results of optical cell model
(OCM) evaluations by calculations and analysis of cross-polarized diffraction
image (p-DI) pairs. Four types of realistic OCMs have been developed with two
prostate cell structures and adjustable refractive index (RI) parameters to investi-
gate the effects of cell morphology and index distribution on calculated p-DI pairs.
Image patterns have been characterized by a gray-level co-occurrence matrix
(GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL
have been selected to compare calculated against measured data of prostate cells.
Our results show that the irregular shapes of and heterogeneity in RI distributions
for organelles play significant roles in the spatial distribution of scattered light by
cells in comparison to the average RI values and their differences among the organ-
elles. Discrepancies in GLCM and δL parameters between calculated and measured
p-DI data provide useful insight for understanding light scattering by single cells
and improving OCM.
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1 | INTRODUCTION

Biological cells possess heterogeneous and complex 3D
morphology to support their functional diversity and envi-
ronmental adaptability [1]. Study of cell morphology
through imaging is of fundamental importance in life science
and has been a subject attracting intense research efforts.

Among various imaging options, fluorescence microscopy
by incoherent light remains a tool of choice to quantify cell
morphology in details. Despite recent advances in micros-
copy and machine learning [2, 3], these approaches often
require staining, time-consuming acquisition and manual
reading for interpretation. Alternative methods without stain-
ing requirement have stimulated active research interests for
the benefits of little disturbance to imaged cells and much
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reduced preparation labors. Compared with other methods,
multi-shot and interferogram-based imaging of coherent
light scattered by cells stands out for strong signals and its
ability to profile 3D distribution of refractive index
(RI) [4–10]. Determination of RI distribution from the mea-
sured interferogram data, however, requires phase extrac-
tions followed by either computationally expensive
tomographic reconstruction using, for example, the filtered
back projection algorithm [11], or a priori knowledge of cell
morphology. Several approximations have been applied in
both methods to derive RI that include unwrapping the phase
distributions of scattered light treated as scalar wavefields
and relating phase data to line integrals of intracellular RI by
assuming scattered field as plane wavefields. While valida-
tions of these approximations have been performed with
simple scatterers such as homogeneous spheres and cells,
uncertainty in accuracy of calculated RI remains for the
cases of nucleated cells with numerous and highly heteroge-
neous intracellular organelles of substantially rugged and
irregular shapes. The contradictory results on the differences
between RI values of cytoplasm and nucleus in previous
interferogram based studies manifest such uncertainty in
which only cytoplasm and nucleus were considered in light
scattering by nucleated cells [8, 10, 12].

Rapid and morphology-based assay through single-shot
imaging of coherent light scattered by cells over a limited
angular range has been investigated in the settings of flow
cytometers and microfluidic devices [13–16]. To achieve
high throughput, diffraction imaging needs to be completed
in a few milliseconds per cell. Under these conditions, we
have developed a method of polarization diffraction imaging
flow cytometry (p-DIFC) that acquires a pair of cross-
polarized diffraction images (p-DIs) per cell by splitting the
scattered light into s- and p-polarized components [17–21].
Unlike quantitative phase imaging methods for RI determi-
nation, each p-DI pair by itself provides insufficient “view”
of the imaged cell for 3D reconstruction of RI due to the lim-
ited angular range of about 50� centered on the side scatter
direction. Rather, the goal is to investigate if the p-DI data
contain sufficient information for cell assay and classifica-
tion by light scattering and whether one can correlate the
image patterns with the intracellular distribution of RI for
extraction of morphology information. It has been shown
experimentally that the p-DI pairs contain rich information
of diffraction pattern features and allow accurate and rapid
classification of cell populations by their strong correlation
to 3D morphology [20, 22–26]. These results demonstrate a
different and promising approach for accurate, label-free and
rapid assay of cells when combined with machine learning–
based image processing.

Clear understanding of relations between cell morphol-
ogy and patterns of acquired images is critically important to
translate the p-DIFC method into a practical approach for
label-free cell assay. It is very difficult, if not impossible, for

single-shot imaging to measure angular distribution of scat-
tered light reliably over sufficiently large ranges for rapid
assay by RI reconstruction. Therefore, development of accu-
rate methodology or framework of modeling and evaluation
is necessary to extract useful features from diffraction image
(DI) data for morphology based and real-time assay. The
challenges for DI simulations are to establish realistic optical
cell models (OCMs) and quantify the coherent wavefields of
scattered light propagating through imaging optics. Nearly,
all reported OCMs up to now have been developed as single
or mixed spheres and ellipsoids [27–34]. Other studies have
been pursued in modeling light scattering by nonspherical
but homogeneous red blood cells and platelets such as
biconcave disks, bell-shaped curves, bispheres and over-
curved rings [35–39]. While these analytical cell models are
useful to illustrate certain aspects of coherent light scattering
by cells, they are of very limited capacity to interpret diffrac-
tion patterns exhibited by DI data in terms of 3D intracellu-
lar distribution of RI related to cell morphology.

Motivated by the lack of accurate tools for nucleated
cells of multiple organelles, we have developed tools to
reconstruct 3D cellular structures by fluorescent confocal
imaging data and convert them into realistic OCMs [18,
40–42]. In this report, we present different realistic OCMs
and an evaluation method for detailed comparison of calcu-
lated DIs with measured data. A gray-level co-occurrence
matrix (GLCM) algorithm has been employed to quantify
textures of measured and calculated DIs. The dependence of
GLCM parameters extracted from calculated p-DI pairs on
cell morphology and RI distribution was analyzed with four
types of OCMs built with two prostate cell structures. We
show by these results that the new method by quantitative
comparison of diffraction patterns in p-DI data allows devel-
opment and improvement of realistic OCMs for
morphology-based cell assay by single-shot diffraction
imaging.

2 | METHODS

2.1 | Measurement and calculation of p-DI pairs

For acquisition of p-DI pairs from single cells, suspension
samples of biological cells are prepared in a concentration of
about 2 × 106 cells/mL and injected into the core fluid
stream of a p-DIFC system [17–20, 24]. A continuous-wave
and linear polarized laser beam of λ = 532 nm in wave-
length is propagated along the z-axis and focused on the core
fluid. By hydrodynamic focusing with a sheath fluid, cells
flow in a single file through the focal spot of incident beam
that is about the size of core fluid around 30 μm. Light scat-
tering occurs as the cell passed through the focus of incident
beam due to the mismatch of RI between cell and core fluid
as host medium. The coherent light scattered by the cell
propagates through the host medium of water and a glass
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flow chamber before collection by an imaging unit along the
side directions as shown in Figure 1A. The imaging unit
detailed in Figure 1B consists of an infinity-corrected 50x
objective of 0.55 in NA (378–805-3, Mitutoyo, Aurora, Illi-
nois), a polarizing beam splitter for separating scattering
light into s- and p-polarized components, two tube lenses
and two charge-coupled-device (CCD) cameras. The unit,
with camera sensor fixed to the focal plane of tube lens, can
be translated away from the focused position toward the
flow chamber (Δx > 0) to increase the contrast and vary col-
lection angular cone [18, 43].

The diffraction imaging process using a p-DIFC systems is
simulated by a hybrid model according to the experimental con-
figuration illustrated in Figure 1A. [17–20]. Briefly, the calcu-
lated p-DI pairs are obtained in two steps: simulation of light
scattering by a cell presented as an OCM followed by ray-
tracing based on geometric optics through the assembly of host
medium of water, chamber glass, air and imaging unit. An
open-source code of ADDA allows accurate simulation of the
coherent scattering using the discrete-dipole-approximation [44].
In this method, an incident laser beam is represented by a plane
wavefield and the cell as a scatterer by a voxel array of OCM
with heterogeneous intracellular RI distribution. The angle-
resolved distributions of scattered light intensity are saved in the
form of 4 × 4 Mueller matrices [Sij(θs, ϕs)] with (θs, ϕs) as the
scattering polar and azimuthal angles [36]. A code for relaying
scattered light from the scatterer at the origin to camera sensor
has been built on MATLAB (2013a, MathWorks, Natick, Mas-
sachusetts) for geometric optics-based ray-tracing. The software
first reads selected elements of Sij based on the polarizations of

incident and scattered light and project them on a virtual input
plane Γin indicated in Figure 1B as an input image Iin(z, y). The
pixels of Iin are associated with the rays of scattered light propa-
gating along directions marked by θs2[65�,115�] and
ϕs2[160�,200�] [22]. The MATLAB code then calls a commer-
cial software (2009, Zemax, Kirkland, Washington) to perform
ray-tracing from Iin(z, y) on Γin from the host medium of water
to the image plane Γim at the end of imaging unit to obtain a cal-
culated image of Iim(z, y) on Γim as illustrated in
Figure 1B. Different sets of the Mueller matrix elements Sij
need to be used for different combinations of incident beam
polarization and s- or p-polarized DIs with details given
in [42].

2.2 | Optical modeling of single cells

To build realistic OCMs with 3D structures, we acquire confocal
fluorescent image stacks of doubly stained cells as described
elsewhere [41, 45]. The cells are typically stained with Syto-61
for nucleus and MitoTracker Orange for mitochondria due to
their important roles in light scattering [46, 47]. The fluores-
cence intensity of the two reagents is recorded in red and green
channels as Fr(r) and Fg(r), respectively. Reconstruction is per-
formed by an in-house developed MATLAB code on a confocal
image stack by segmentation of each raw image slice followed
by slice interpolation to obtain an array of cubic voxels repre-
senting the cell's 3D morphology. The exported voxel array con-
tains organelle type identifier for each voxel, cytoplasm or
nucleus or mitochondria, and the fluorescence intensity of Fr(r)
and Fg(r) [45]. For this study, the nuclear (or mitochondrial)
voxels carry Fr (or Fg) values only while the cytoplasm voxels
hold both intensities as the result of target molecules existing in
small concentrations in cytoplasm. Each cell structure has an ori-
entation vector C defined as a line pointing from the mass center
of cell to that of nucleus that has its Euler angles given by (α, β,
γ) in the coordinate system defined in Figure 1.

A realistic OCM is defined in the near-field zone simula-
tion of light scattering by ADDA using the 3D voxel array
described above. Each intracellular voxel at r has its real part
values of complex RI denoted as nη(r) with η = c or n or m
for cytoplasm or nucleus or mitochondria, respectively. The
voxels external to the cell in the near-field zone are regarded
as the host medium of water for ADDA calculation and their
real part values of RI are set to nh = 1.334 for light of
λ = 532 nm. For prostate cells described in this study, we
consider them having little absorption in the visible spectral
region so that the imaginary part values of RI are set to 1.5
× 10−5 for all voxels. The ADDA simulations were per-
formed with ratios of wavelength-to-voxel-size or dipole-
per-wavelength (dpl) values ranging from 5 to 10 [44].

We have developed fluorescence intensity–based OCMs
to obtain nη(r) for intracellular voxels [41]. In this model,
the concentrations of molecules targeted by the fluorescent
reagents are presumed to be linearly proportional to Fr(r) or
Fg(r). Furthermore, we assume a linear relation between the

FIGURE 1 A, schematic of polarization diffraction imaging flow
cytometry (p-DIFC) configuration with the green lines representing incident
and scattered light of λ = 532 nm and red lines the coordinate axes:
BE = beam expander; M = mirror; ND = neutral density filter;
FL = focusing lens; FC = flow chamber; LED = white illumination LED;
OB = objective; BF = bandpass filter centered at 532 nm;
PBS = polarizing beam splitter; BS = beam splitter; TL = tube lens;
CCD = camera. B, schematic of cross-polarized diffraction image (p-DI)
simulation along one polarized branch with blue lines representing the input
plane Γin and image plane Γim
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dry mass of a targeted molecule type in each voxel with real
RI given by

nη rð Þ¼ nc0 + brFr rð Þ+ bgFg rð Þ 8r2Ωη, ð1Þ
where nc0 is the RI of aqueous component in organelles such
as cytosol in cytoplasm, br or bg is respectively the specific RI
increment coefficients by concentration or dry mass per voxel
and Ωη represents the voxel set of organelle η. The two coeffi-
cients of br and bg thus link fluorescent light intensity
recorded in the confocal image to the concentrations of
nuclear acids and mitochondrial biomolecules targeted by the
reagents. The fluorescence intensity based OCMs as given by
Equation (1) are denoted as OCMfl in this report, and the three
parameters of nc0, br and bg can be adjusted to examine the
effects of organelle molecules on diffraction patterns embed-
ded in p-DI pairs. It is easy to show that br is determined by
the average RI of nuclear voxels or nn,av with the aid of Equa-
tion (1) by summing over all nuclear voxels, that is,

nn,av ¼ nc0 + br
1
Nn

X
r2Ωn

Fr rð Þ
( )

¼ nc0 + brFrn,av, ð2Þ

where Frn,av is the average Syto-61 fluorescence intensity
saved in red channel for all nuclear voxels. With the above
result, we find

br ¼ nn,av−nc0
Frn,av

: ð3Þ

Similarly, one can derive bg from nm,av by

bg ¼ nm,av−nc0
Fgm,av

, ð4Þ

with Fgm,av as the average fluorescence intensity of Mito-
Tracker Orange saved in green channel for all mitochondrial
voxels. The “molecular composition” of a given OCMfl

based on a cell structure can be modified by adjusting the
input parameters of nc0, nn,av and nm,av.

Three variants of OCMfl are introduced in this study to
investigate the effect of RI heterogeneity on DIs with the
same set of input parameters. Two of these models denoted
as OCMpfn and OCMpfm are of “partial fluorescence” nature
in which voxels of only one organelle type, nucleus or mito-
chondrion, have their RI values obtained by Equation (1)
while the voxels of the other two organelle types are set to
have constant RIs. For example, OCMpfn has nn(r) given by
Equation (1) and nc(r) = nc,av and nm(r) = nm,av. The last
model is defined as OCMnf of “no fluorescence” nature in
which the RI values are set to different constants as nc(r) =
nc,av, nm(r) = nm,av and nn(r) = nn,av.

2.3 | Quantitative image characterization by GLCM
parameters

As a second-order statistical method, the GLCM algorithm
generates a matrix p(d, ξ) = [pij(d, ξ)] of rank G given an
input image I and G is the number of gray levels or pixel

intensities of I [48]. Each element pij(d, ξ) is defined as the
relative frequency of pixel pairs having intensities of i and j
and the two pixels in each pair are separated by d pixels
along a direction marked by ξ. Four matrices can be obtained
for the four directions of pixel pairs with ξ = 0�, 45�, 90�

and 135�. In this study, we employed the GLCM averaged
over the four directions with d = 1 for each input image.
Before GLCM calculation, an image I of 12-bit pixels in a
measured p-DI pair or of 16-bit pixels in a calculated p-DI
pair was normalized into 8-bit pixels so that the GLCM of
rank G equals to 28 or 256 for reduced computational cost.
The image textures are quantified by 15 parameters extracted
from the averaged GLCM whose definitions and symbols
are given in [49].

3 | RESULTS AND DISCUSSION

3.1 | Confocal imaging of PC3 and PCS cells

Two prostate cell types were used for this study: PC3 human
prostate cancer cells (CRL-1435, ATCC, Manassas, Vir-
ginia) and PCS normal human prostate epithelial cells
(PCS440010, ATCC). A total of 40 PC3 and 38 PCS cells
doubly stained by Syto-61 and MitoTracker Orange were
imaged with a laser scanning confocal microscope (LSM
510, Zeiss, Thornwood, New York) [24]. Image stacks were
acquired using a 63× water-immersion objective of 1.2 in
NA and a 4× digital zoom. Figure 2A,B present confocal
image slices selected from the stacks of a PC3 and a PCS
cell acquired with a stepsize of 0.5 μm along the direction
perpendicular to the object plane. For each image slice of
512 × 512 pixels, the fluorescence light intensities of Syto-
61 saved in red and MitoTracker Orange in green channels
were used to segment pixels into three sets of nucleus, mito-
chondria and cytoplasm. Then additional slices were added
through interpolation for reconstruction of a 3D array of
nearly cubic voxels and calculation of 29 morphology
parameters [41, 45]. We have performed diffraction imaging
simulations on six cell structures with three for each of the
PC3 and PCS types that have typical morphology parameters
among the imaged cells. The results presented in this report
were obtained with two of the six cell structures denoted as
PC3-a and PCS-a in Figure 2C and Table 1. We note that the
size of PC3-a cell is significantly larger than that of the PCS-a
cell, which allow us to compare the effect of different morphol-
ogy on textures and GLCM parameters of the calculated DIs.

3.2 | Diffraction imaging of PC3 and PCS cells and
GLCM parameter correlations

We acquired p-DI pairs of 640 × 480 pixels for each
image from PC3 and PCS cells using a p-DIFC system
and an incident laser beam of λ = 532 nm [24]. The imag-
ing unit was translated to an off-focus distance of Δx = 150
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μm for increasing the angular magnification of scattered light
as discussed in [43]. The direction of linear polarization was
changed for the incident laser beam during data acquisition to
be either vertical (ver), horizontal (hor) or 45� from horizontal
z-axis in the scattering plane (x-z). In Figure 3 we present
examples of measured p-DI pairs acquired with three different
incident beam polarizations, which are used here for compari-
son to the calculated p-DI pairs. To quantify the transfer of
light energy between co-polarized and cross-polarized compo-
nents, we employed the linear depolarization ratio as defined
below [50].

δL,ver ¼ Ip,ver
Is,ver

, δL,hor ¼ Is,hor
Ip,hor

, δL,45� ¼ Ip,45�

Is,45� ,
ð5Þ

where I is the average pixel intensity of an image with
its subscripts indicating the polarizations of incident and
scattered light. Table 2 provides the values of linear depolar-
ization ratio and other parameters for one set of measured
data. The mean values of δL show that these cells exhibit

strong ability to transfer energy in the side scatter from co-
polarized to cross-polarized component relative to the inci-
dent light. In comparison, single particles of spherical sym-
metry have δL,ver = δL,hor = 0.

Using the measured p-DI data of PC3 and PCS cells,
we further assessed GLCM parameter correlations in search
of a small set that has sufficient information capacity for
texture characterization. Otherwise, employment of all
15 GLCM parameters presents a high dimensional problem
that often obscures the evaluation of OCMs. A total of
7322 DIs from three sets of p-DI pairs measured form PC3
and PCS cells were used to calculate the 15 GLCM param-
eters after normalization into eight-bit images. Bivariate
Pearson and Spearman correlation coefficients [51] were
obtained on paired GLCM parameters and are denoted,
respectively, as rP and rS. Their values range from less than
0.1 for very week correlations to larger than 0.9 for very
strong correlations for a given pair of GLCM parameters.
In addition to |rP| and |rS|, we also obtained the multiple
correlation coefficient R2 using the same combined DI data
set to assess each GLCM parameter's predictability of the

z( m) 

PCS-a 
PC3-a 

(C) 

8 22  35  30  

PCS-a  

(B) 

8 42  24  32  

PC3-a 

(A) 

FIGURE 2 Selected confocal images acquired from the following: A, a PC3 cell and B, a PCS cell marked with slice numbers in respective stack. The red
and green channels store Syto-61 and MitoTracker Orange intensities respectively. C, two perspective views of the two reconstructed cells with nuclei colored
in dark pink and mitochondria in green. Bar = 5 μm

TABLE 1 Three-dimensional morphology parameters of PC3-a and PCS-a cellsa

Cell structure ID Vc (μm3) SVrc (μm−1) ERc (μm) <Rc> (μm) Vrnc (%) SVrn (μm−1) Vrmc (%) SVrm (μm−1)

PC3-a 2250 0.500 8.13 8.35 44.0 0.693 5.57 6.24

PCS-a 1118 0.614 6.44 6.56 30.1 0.964 4.71 6.42

a ID: identification; Vc: cell volume; SVrc (SVrn or SVrm): surface-to-volume ratio of cell (nucleus or mitochondrion); ERc: equivalent radius of cell; <Rc>: average dis-
tance of cell membrane voxels to centroid; Vrnc (Vrm): volume ratio of nucleus(mitochondrion)-to-cell.
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other 14 parameters in their values. The ranked list of
GLCM parameters is given in Table 3 in the order of
increasing R2 values.

We chose a set of four parameters for OCM evaluation
here that consists of the top three parameters of low R2

values and one of good performance in classifying PC3
and PCS cells by the support vector machine method [24].
Figure 4 presents the scattered plots of these GLCM
parameters in pairs with values of rP and rS. It can be seen
from these plots that the DIs of PC3 cells have their
parameter values clustered near the low ends of ranges for
each of the four parameters in comparison with those of
PCS cells.

3.3 | Calculated p-DI pairs: Effect of cell orientation

Calculations of p-DI pairs were carried out with different
OCMs and the simulation method described in the Method
section with λ = 532 nm and other parameters based on the
experimental configuration. As nonspherical and highly het-
erogeneous scatterers, a biological cell is expected to yield
different spatial distributions of scattered light as its orienta-
tion changes relative to the incident beam. Based on our
experimental and numerical study results, however, the ori-
entation variations among cells imaged by the p-DIFC
method do not prevent cell classification into different proto-
types [20, 22, 24, 25] or OCMs in different RI distributions
[42]. This suggests that in a flow cytometry setting

FIGURE 3 Selected cross-polarized diffraction image (p-DI) pairs acquired from single PC3 and PCS cells and normalized by each image's maximum and
minimum pixel values. The cell type, incident beam polarization, scattered light polarization (s or p), maximum, average and minimum pixel values are
marked in each image

TABLE 2 The values of linear depolarization ratio δL and other parameters

Parameters

PC3 cells PCS cells

ver hor 45� ver hor 45�

Incident power P0 (mW) 41 89 73 41 89 73

Number of p-DI pairs NDI 716 681 770 668 623 378

Pixel intensityIs, Ip
(a) 177,4.90 40.3,97.2 310.2,13.7 336,18.5 77.2197 286,16.8

Maximum δL (%) 22.9 109 23.3 253 602 51.2

Minimum δL (%) 1.81 11.7 2.16 0.356 4.58 2.70

Mean δL (%) 3.05 45.6 4.30 5.92 61.0 5.96

Abbreviations: p-DI, cross-polarized diffraction image; hor, horizontal; ver, vertical.
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orientation is likely not randomized among imaged cells but
rather aligned in certain preferred directions. To verify this
conclusion, we calculated p-DI pairs by the PC3-a and PCS-
a structures and OCMfl defined in Equation (1). Each cell
structure has been rotated 12 times by varying the Euler
angles of vector C and the off-focus distance Δx of the
imaging unit was set to 80 μm in ray-tracing for larger angu-
lar ranges of scattered light collection in calculated p-DI
data. Figure 5 presents four examples of the calculated p-DI
pairs for each cell structure with the ver incident polarization
for comparison of image pattern changes. By visualization
and comparison of GLCM parameters (not shown) and
δL,ver, we found the texture and pixel intensity changes due
to varied cell orientation are relatively small in comparison
to fluctuations in the measured data as shown in Figure 3
and the values of δL in Table 2. In the following results,
we compare different OCMs at a fixed orientation by set-
ting all OCMs at the same direction of C that corresponds
to (α, β, γ) = (0, 0, 0) unless noted otherwise.

3.4 | Calculated p-DI pairs: Effect of OCMs

We performed p-DI simulations with four types of OCMs
built from prostate cell structures of PC3-a and PCS-a for
each of three incident beam polarizations. The results pre-
sented here are mainly on the variation of the average RI
value nn,av for nuclear voxels between 1.390 and 1.470 in

steps of 0.020 while nc0 and nm,av were fixed at 1.360 and
1.530. The choice of these RI value ranges was based on
results published in literature [5, 7, 9] and so did other
choices of RI parameter value including different values of
nm,av. The off-focus distance Δx of the imaging unit in ray-
tracing calculations was changed to 150 μm, which is the
same value used for p-DI measurement to facilitate the com-
parison of calculated and measured data. The wall-clock
time T of light scattering simulation depends on the size of
cell structures and choices of RI values for parallel execution
of ADDA code on 24 CPU cores of a computing cluster
node (PowerEdge C4130, Dell, Round Rock, Texas). For
PCS-a of small cell size and same values of nc0 at 1.36 and
nm,av at 1.530, T ranges from about 24 for nn,av = 1.39 to
32 minutes for nn,av = 1.47 while T ranges from 61 to
387 minutes for PC3-a of large size and the same RI varia-
tions. Compared to ADDA simulation, projection of the
Mueller matrix elements to the input plane Γin and ray-
tracing to the image plane Γin took only around 10 minutes
on a computer with one i5-6500 CPU of 3.2GHz.

Figures 6 and 7 show examples of calculated p-DI pairs
with ver and hor incident beam polarizations that are ana-
lyzed in detail below. By comparing the calculated p-DI
pairs in these two figures to the measured data in Figure 3,
certain similarity in image textures can be identified to sup-
port the use of realistic OCMs as defined in this report for
simulation of diffraction imaging. We note further that the

TABLE 3 The list of 15 GLCM parameters ranked by increasing R2 values

GLCM parameters ASMa ENT MAP COR CLP CLS SVA VAR

R2 (%) 97.95 98.98 99.04 99.34 99.41 99.77 99.78 99.78

GLCM parameters SEN CON DEN SAV IDM DVA DIS

R2 (%) 99.81 99.82 99.84 99.84 99.84 99.94 99.95

a GLCM parameter definition is given in [49].
Abbreviation: GLCM, gray-level co-occurrence matrix.

FIGURE 4 Scattered plots of four gray-level co-occurrence matrix (GLCM) parameters extracted from diffraction images of 4520 PC3 and 2802 PCS cells:
ASM = angular second moment; MAP = maximum probability; ENT = entropy; IDM = inverse difference moment. The values of rP and rS are given in
each plot
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OCMs with the chosen RI parameter values yield values of
linear depolarization ratio or δL, as marked in Figures 6 and
7, close to those of measured DIs as listed in Table 2. Specif-
ically, significant differences in δL values of p-DI pairs
between ver and hor incident polarizations can be found in
the calculated data that δL ~ 10% for DIs in Figure 6 with
ver incident polarization and increases by factors up to three
for DIs in Figure 7 with hor polarization. The same relation
with large factors of increase also occurs in the measured
data as shown in the Table 2 data.

For quantitative evaluation, we applied the GLCM algo-
rithm for characterization of image textures with four param-
eters selected for their different capacities to depict image
textures and high performance to classify PC3 and PCS cells
by the measure DI data. We plot in Figures 8 and 9 the
dependence of GLCM parameters on average nuclear voxel
RI value nn,av in the four OCM types for ver and hor incident
polarizations. Each symbol with the associated error bar rep-
resents the mean value and SD of a GLCM parameter from
one DI calculated by the same OCM in three orientations,
which allow the estimation of fluctuations in DI data due to
small variation of cell orientation in passing through the inci-
dent beam. Consistent with the results in Figure 5, the

GLCM parameter fluctuations revealed by the error bars
show the effect of cell orientation on diffraction patterns.
The fact that accurate cell classification can be achieved by
the measured p-DI data [24] suggest that the differences in
intracellular distribution of RI dominate the spatial distribu-
tion of scattered light in comparison with the orientation
variations.

It is first noticed only in the case of PC3-a for a large cell
structure with incident polarization of ver that the OCMnf

model of constant but different organelle RI values yields
GLCM parameters significantly different from the other
three OCMs when nn,av increases to 1.470. The deviation of
GLCM parameters of DIs by OCMnf from the other models
disappears in other cases of PCS-a as a smaller cell structure
and hor polarization as shown by the diagrams on the right
column of Figure 8 and both columns of Figure 9. Similar
results were also observed in OCMs with small values of
nm,av for mitochondrial voxels ranging from 1.410 to 1.590
(not shown). These results suggest that the heterogeneity in
RI values of nuclear voxels can significantly modify the tex-
tures of DIs for large nuclear volume Vn which diminishes
as Vn decreases. The GLCM parameter data in Figures 8 and 9
also demonstrate that the diffraction patterns in the

FIGURE 5 Normalized cross-polarized diffraction image (p-DI) pairs calculated by optical cell model (OCM)fl with two cell structures with vertical incident
polarization, λ = 532 nm and Δx = 80 μm. Each pair is marked with Euler angles of C, cell structure, incident and scattered polarizations and value of δL.
Refractive index (RI) parameters are given by nc0 = 1.360, nn,av = 1.390 and nm,av = 1.530

FIGURE 6 Normalized cross-polarized diffraction image (p-DI) pairs calculated by different optical cell models (OCMs) ranging from OCMfl on the two
left columns to OCMnf on the two right columns with vertical incident polarization, λ = 532 nm and Δx = 150 μm. Each pair is marked with OCM type,
nn,av, cell structure, incident and scattered polarizations and value of δL. Other refractive index (RI) parameters are given by nc0 = 1.360 and nm,av = 1.530
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calculated DIs are not sensitive to the values of average
nuclear RI, which is corroborated by direct examination of
DIs in Figures 6 and 7. Furthermore, both of the measured
and calculated DI data presented in this report exhibit highly
unsymmetrical diffraction patterns that are entirely different
from those in DIs of single and aggregated spheres [26, 52].
Taken together, these results indicate strongly that the highly

irregular shapes of and RI heterogeneity inside organelles
play more important roles than the average RI values in the
spatial distribution of scattered light wavefields.

Even though GLCM parameters are difficult to interpret,
it is possible to gain useful insights from their definitions for
evaluation of OCMs by analyzing the value differences
between calculated and measured DIs [48, 49]. For example,

FIGURE 7 Same as Figure 6 except with horizontal incident polarization

FIGURE 8 Selected four gray-level co-occurrence matrix (GLCM) parameter of s-polarized diffraction images (DIs) and vertical incident polarization vs
nn,av in different optical cell models (OCMs) of PC3-a (left column) and PCS-a (right column) with simulation parameters given in Figure 6. Each symbol and
error bar represent the mean value and SD determined from DIs obtained using the same OCM in three orientations with Euler angles of C given by (0, 0, 0),
(0, 30�, 0) and (0, 0, 30�). The arrowed vertical lines on the right indicate the parameter ranges of the measured data shown in Figure 4 for the same cell type.
The lines connecting symbols are for visual guide
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ASM or angular second moment is obtained as the sum of
squared elements as pij

2 and varies between G−2 and 1. For
G = 256 in our cases this leads to 1.53 × 10−5 ≤ ASM ≤ 1.
For images of increasingly randomized pixel intensity, ASM
value decreases because pij approaches to a constant of G−2.
The ASM value increases toward 1 for images of periodic
variations in pixel intensity and become 1 if the period equals
to the paired pixel distance d. Consequently, the value of
ASM offers a measure of randomness in paired pixel intensity
distributions. Because of the noise background in measured
DIs as shown in Figure 3, one can expect that the ASM values
for these images tend to be smaller than those in the calcu-
lated ones in Figures 6 and 7. This turns out to be the case for
calculated DIs with OCMs using the PC3-a structure that stay
near the low end of the range of the measured data as indi-
cated by the arrowed line. One may attribute the better
matches between ASM values of calculated and measured
DIs in the case of PCS-a to the fact that the measured p-DIs
of PCS cells exhibit greater pixel intensity variations in their
patterns. Interestingly, the parameter ENT or entropy also
gauges the degree of randomness in the intensity distributions
of paired pixels but its values of calculated DIs are near the
middle of the ranges of the measured DIs.

Among the selected GLCM parameters, IDM displays
large value differences between the measured and calculated
data in Figures 8 and 9. IDM is defined as the sum of pij
with a weight that decreases as the intensity difference of

paired pixels or (i-j)2 increases. This makes IDM very sensi-
tive to the values of diagonal and near-diagonal elements in
a GLCM. As a result, small IDM values indicate reduced
numbers of pixel pairs having the same or similar intensities.
One can observe that the measured DIs of co-polarized
component in Figure 3, vertical-s or horizontal-p, exhibit
wide-spread distributions of bight-dark spots over the full
image field while the calculated DIs display large dark
patches or pixel pairs of similarly low intensities in the
peripheral areas. These results suggest that the calculated
DIs have IDM values larger than or near the high end of
the range by the measured DIs, which agree with the IDM
plots in Figures 8 and 9 for both PC3-a and PCS-a struc-
tures. On the other hand, Figures 8 and 9 show that the
OCMs developed in this report can yield DIs with MAP or
maximum values of {pij} that are similar to those of the
measured data. We note here that other errors in the process
of DI calculations can also cause the disagreement against
the measured data, which include omission of intracellular
organelles contributing to light scattering other than
nucleus and mitochondria and inaccuracies in 3D recon-
struction of cell structures for OCM.

4 | CONCLUSION

It is well known that rich information on 3D morphology
can be extracted from spatial distributions of coherent light

FIGURE 9 Same as Figure 8 except gray-level co-occurrence matrix (GLCM) parameters of p-polarized diffraction images (DIs) and horizontal incident
polarization
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scattered by microscopic particles in visible and near-
infrared regions. Consequently single-shot imaging of scat-
ted light intensity has strong potentials to become a powerful
tool for rapid and label-free assay of single cells. Clear
understanding of the relations between morphological
features of imaged cells and diffraction patterns revealed by
p-DI data is of fundamental importance and presents very
challenging problems because of the highly heterogeneous
cell structure and large variations even within the same phe-
notype. Development of a platform of realistic OCMs and
validation approaches allows evaluation of OCMs through
image data, which represents the first-step efforts to translate
the methods of single-shot diffraction imaging into practical
tools for label-free cell assay. In this report, we present a
framework to build different realistic OCMs for simulation
of diffraction imaging of live cells and evaluate them by
comparing calculated p-DI pairs to the measured data with
selected GLCM parameters and δL. It has been shown that
nonspherical and highly irregular shapes of organelles in
realistic OCMs are essential to obtain calculated p-DI pairs
comparable to measured data of two prostate cell types.
Detailed analysis of image intensity and textures by δL and
GLCM reveals that the model parameters of nc0, nn,av and
nm,av have limited effects on diffraction patterns. Heteroge-
neity in RI distributions affects significantly the diffraction
patterns for large RI values of nucleus. Still, the current real-
istic OCMs cannot generate calculated p-DI pairs with dif-
fraction patterns and intensity ratios fully compatible to
those of measured data for the prostate cells. OCM improve-
ment with additional scattering relevant organelles such as
lysosomes [6] is undertaken that will be evaluated with the
framework presented here.
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